
Introduction to Analysis of the Infinite
Chapter 18: Continued Fractions

Leonhard Euler

356. Having treated at length in the preceding chapters both infinite

series, and products combining infinitely many factors, it would seem ap-

propriate to say a few words about a third kind of infinite expression, those

containing continued fractions or divisions. Though this kind of expression

has indeed been hardly developed thus far, we nevertheless do not doubt that

it will find ample use in the analysis of the infinite. In fact I have already

shown several examples of this kind, which reinforces this expectation in no

small way. But in this chapter, it is principally applications to arithmetic

and common algebra that I set out to briefly point out and explain.

357. By a continued fraction, I mean a fraction whose denominator con-

sists of a whole number added to a fraction, which itself in turn has for a

denominator a whole number and fractional part formed in the same manner

as the preceding, and so on in sequence, whether there be an infinite number

of such fractions, or a finite number of them.

Such are the following expressions:

a+
1

b+
1

c+
1

d+
1

e+
1

f + · · ·

or a+
α

b+
β

c+
γ

d+
δ

e+
ε

f + · · ·

In the first, the numerators of all the fractions are unity. Those are the ones

we will principally consider. In the second, the numerators are arbitrary

numbers.

358. Having shown the form of these continued fractions, the next thing

is to discover how they might be represented in the way that fractions are

ordinarily expressed. To do this easily, let us proceed to break them off in

steps, starting at the first fraction, then at the second, then at the third, and
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so on. Doing this clearly yields

a = a

a+
1

b
=

ab+ 1

b

a+
1

b+
1

c

=
abc+ a+ c

bc+ 1

a+
1

b+
1

c+
1

d

=
abcd+ ab+ ad+ cd+ 1

bcd+ b+ d

a+
1

b+
1

c+
1

d+
1

e

=
abcde+ abe+ ade+ cde+ abc+ a+ c+ e

bcde+ be+ de+ bc+ 1

etc.

359. Although the rule which governs how to construct the numerator and

denominator out of the letters a, b, c, d, etc., is not easily discerned, never-

theless some attention will reveal that each fraction may be formed from the

ones preceding it. Each numerator, in fact, is the last numerator multiplied

by the new letter, plus the numerator before that; and the denominators

follow the same rule. So by writing the letters a, b, c, d, etc., in a row like

this

a b c d e

1

0
,

a

1
,

ab+ 1

b
,

abc+ a+ c

bc+ 1
,

abcd+ ab+ ad+ cd+ 1

bcd+ b+ d

it is easy to find the next fraction from the ones already found: multiply the

last numerator already found by the letter above it, then add to this product

the numerator before that; and the same rule applies to the denominators.

In order that this rule can be applied from the start, I have prefixed the

fraction 1/0 which, although it does not originate from a continued fraction,

it nevertheless makes the rule of progression more apparent. Moreover, each

fraction shows the value of the continued fraction which is continued up to

and including the letter written above the term which precedes it.
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360. Similarly, the other form of continued fraction,

a+
α

b+
β

c+
γ

d+
δ

e+
ε

f + · · ·

will give, when broken off in the exact same places, the following values

a = a

a+
α

b
=

ab+ α

b

a+
α

b+
β

c

=
abc+ βa+ αc

bc+ β

a+
α

b+
β

c+
γ

d

=
abcd+ βad+ αcd+ γab+ αγ

bcd+ βd+ γb

etc.,

in which each fraction will be found from its two predecessors as follows

a b c d e

1

0
,

a

1
,

ab+ α

b
,

abc+ βa+ αc

bc+ β
,

abcd+ βad+ αcd+ γab+ αγ

bcd+ βd+ γb
.

α β γ δ ε

361. That is to say, written above the fractions to be formed are the indices

a, b, c, d, etc., and written below them, the indices α, β, γ, δ, etc. The first

fraction will again be set to 1/0, and the second to a/1. Then the subsequent

fractions will be found as follows. The immediately preceding numerator is

multiplied by the index above it, but then the numerator before that one is

multiplied by the index below that one, and then the two products are added

together. This sum will be the numerator of the next fraction. Similarly,

its denominator will be the sum two products: the immediately preceding

denominator multiplied by the index above it, and the denominator before

that one multiplied by the index below that one. Each fraction found in this

way will provide the value for the continued fraction which is continued up

to and including the denominator indicated by the letter written above the

preceding term.
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362. So if one of these fractions is continued for as long as indices are

available, then the final fraction will give the true value of that continued

fraction. But the preceding fractions ever-more-closely approach this value,

and for that reason they provide an exceedingly convenient approximation

for it. Let us set x to be the true value of the continued fraction

a+
α

b+
β

c+
γ

d+
δ

e+ · · ·

Then it is clear that the first fraction 1/0 is greater than x, but the second

a/1 will be less than x, and the third a + α/b will again be greater, the

fourth once again less, and so on, where these fractions will alternate being

greater, then less, than x. Furthermore, it is clear that each fraction is closer

to x than any of its predecessors is, which gives us a way to quickly and

conveniently approximate the value of x itself, even if the continued fraction

were to go on indefinitely, provided that the numerators α, β, γ, δ, etc., do

not grow excessively. However, if all those numerators are unity, then the

approximation is subject to no such inconvenience.

363. In order to better understand the reason this approximation ap-

proaches the true value of the continued fraction, let us consider the differ-

ences of the above fractions. Ignoring the first 1/0, the difference between

the second and the third is
α

b
.

The fourth subtracted from the third yields

αβ

b(bc+ β)
.

The fourth subtracted from the fifth yields

αβγ

(bc+ β)(bcd+ βd+ γb)
,

etc. Hence the value of the continued fraction will be expressed by an ordinary

series of terms as follows

x = a+
α

b
− αβ

b(bc+ β)
+

αβγ

(bc+ β)(bcd+ βd+ γb)
− · · · ,

where the series terminates when the continued fraction does not go on for-
ever.
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364. We just found a way of converting an arbitrary continued fraction into

a series of terms whose signs alternate, whenever the first letter a vanishes.

For example, if the fraction is

x =
α

b+
β

c+
γ

d+
δ

e+
ε

f + · · ·

by the method above it will be converted to

x =
α

b
− αβ

b(bc+ β)
+

αβγ

(bc+ β)(bcd+ βd+ γb)

− αβγδ

(bcd+ βd+ γb)(bcde+ βde+ γbe+ δbc+ βδ)
+ · · · ,

from which it follows that if α, β, γ, δ, etc., are non-increasing numbers,

for example all ones, but the denominators arbitrary positive integers, then

the value of the continued fraction will be expressed by a quickly-converging

series of terms.

365. That established, an arbitrary series of alternating terms will, in

turn, be able to be converted into a continued fraction, meaning a continued

fraction can be found whose value equals the sum of the given series. Let

such a series be given,

x = A−B + C −D + E − F + · · · ,

and by comparing it termwise with the series arising from the continued

fraction, we will have

A =
α

b
, so α = Ab ,

B

A
=

β

bc+ β
, so β =

Bbc

A−B
,

C

B
=

γb

bcd+ βd+ γb
, γ =

Cd(bc+ β)

b(B − C)
,

D

C
=

δ(bc+ β)

bcde+ βde+ γbe+ δbc+ βδ
, δ =

De(bcd+ βd+ γb)

(bc+ β)(C −D)

etc.
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But since

β =
Bbc

A−B
,

we will have

bc+ β =
Abc

A−B
;

from which

γ =
ACcd

(A−B)(B − C)
.

Further,

bcd+ βd+ γb = (bc+ β)d+ γb

=
Abcd

A−B
+

ACbcd

(A−B)(B − C)

=
ABbcd

(A−B)(B − C)
,

and so we will get

bcd+ βd+ γb

bc+ β
=

Bd

B − C

and

δ =
BDde

(B − C)(C −D)
.

Similarly, we will find

ε =
CEef

(C −D)(D − E)

and so on.

366. In order to clarify this rule, let us set

P = b ,

Q = bc+ β ,

R = bcd+ βd+ γb ,

S = bcde+ βde+ γbe+ δbc+ βδ ,

T = bcdef + · · · ,

V = bcdefg + · · · ,

etc.,
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and by the rule of these expressions, we will have

Q = Pc+ β ,

R = Qd+ γP ,

S = Re+ δQ ,

T = Sf + εR ,

V = Tg + ξS ,

etc.

And so by having introduced these letters, we will obtain

x =
α

P
− αβ

PQ
+

αβγ

QR
− αβγδ

RS
+

αβγδε

ST
− · · · .

367. Therefore, since we are setting

x = A−B + C −D + E − F + · · · ,

we will have

A =
α

P
, α = AP ,

B

A
=

β

Q
, β =

BQ

A
,

C

B
=

γP

R
, γ =

CR

BP
,

D

C
=

δQ

S
, δ =

DS

CQ
,

E

D
=

εR

T
, ε =

ET

DR

etc. etc.



8 Introduction to Analysis of the Infinite

But further, taking differences will yield

A−B =
α(Q− β)

PQ
=

αc

Q
=

APc

Q

B − C =
αβ(R− γP )

PQR
=

αβd

PR
=

BQd

R

C −D =
αβγ(S − δQ)

QRS
=

αβγe

QS
=

CRe

S

D − E =
αβγδ(T − εR)

RST
=

αβγδf

RT
=

DSf

T

etc.

Then if they are multiplied together in pairs, we will get

(A−B)(B − C) = ABcd · P
R

and
R

P
=

ABcd

(A−B)(B − C)

(B − C)(C −D) = BCde · Q
S

and
S

Q
=

BCed

(B − C)(C −D)

(C −D)(D − E) = CDef · R
T

and
T

R
=

CDef

(C −D)(D − E)

etc.,

from which, since

P = b ,

Q =
αc

A−B
=

Abc

A−B
,

we will have
α = Ab ,

β =
Bbc

A−B
,

γ =
ACcd

(A−B)(B − C)
,

δ =
BDde

(B − C)(C −D)
,

ε =
CEef

(C −D)(D − E)

etc.
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368. Having found the values of the numerators α, β, γ, δ, etc., the

denominators b, c, d, e, etc., are left to our discretion. It is appropriate that

they be chosen not only so that they are whole numbers themselves, but also

so that they produce integer values for α, β, γ, δ, etc. But this depends

on the nature of the numbers A, B, C, etc., whether they are integers or

fractions. Let us take them to be integers, and then the requirement will be

satisfied by setting

b = 1 α = A

c = A−B β = B

d = B − C from which γ = AC

e = C −D δ = BD

f = D − E ε = CE

etc. etc.

Consequently, if we set

x = A−B + C −D + E − F + · · · ,

then the very same value of x can be expressed as a continued fraction by

x =
A

1 +
B

A−B +
AC

B − C +
BD

C −D +
CE

D − E + · · ·

369. On the other hand, if all the terms of the series are fractional numbers

such that

x =
1

A
− 1

B
+

1

C
− 1

D
+

1

E
− · · · ,
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then the following values for α, β, γ, δ, etc., will be obtained

α =
b

A
,

β =
Abc

B −A
,

γ =
B2cd

(B −A)(C −B)
,

δ =
C2de

(C −B)(D − C)
,

ε =
D2ef

(D − C)(E −D)

etc.

Therefore let us set as follows

b = A from which α = 1 ,

c = B −A β = AA ,

d = C −B γ = BB ,

e = D − C δ = CC

etc.,

and we will get for the continued fraction

x =
1

A+
AA

B −A+
BB

C −B +
CC

D − C + · · ·

Example I.

Transform this infinite series

x = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

into a continued fraction.

We accordingly set A = 1, B = 2, C = 3, D = 4, etc., and because the

given series has a value equal to log 2, we will have
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log 2 =
1

1 +
1

1 +
4

1 +
9

1 +
16

1 +
25

1 + · · ·

Example II.

Transform this infinite series

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

where π denotes the circumference of a circle whose diameter equals 1, into

a continued fraction.

Substituting for A, B, C, D, etc., the numbers 1, 3, 5, 7, etc., yields

π

4
=

1

1 +
1

2 +
9

2 +
25

2 +
49

2 + · · ·

and so, by inverting the fraction we will get

4

π
= 1 +

1

2 +
9

2 +
25

2 +
49

2 + · · ·

which is the expression Brouncker first advanced for the quadrature of the

circle.

Example III.

If given an infinite series such as

x =
1

m
− 1

m+ n
+

1

m+ 2n
− 1

m+ 3n
+ · · ·

on account of

A = m, B = m+ n, C = m+ 2n, etc.,
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it is transformed into this continued fraction

x =
1

m+
mm

n+
(m+ n)2

n+
(m+ 2n)2

n+
(m+ 3n)2

n+ · · ·

which by inverting becomes

1

x
−m =

mm

n+
(m+ n)2

n+
(m+ 2n)2

n+
(m+ 3n)2

n+ · · ·

Example IV.

Because in §178 above we found that

π cos
mπ

n

n sin
mπ

n

=
1

m
− 1

n−m
+

1

n+m
− 1

2n−m
+

1

2n+m
− · · ·

we will have, for forming the continued fraction

A = m, B = n−m, C = n+m, D = 2n−m, · · · ,

from which

π cos
mπ

n

n sin
mπ

n

=
1

m+
mm

n− 2m+
(n−m)2

2m+
(n+m)2

n− 2m+
(2n−m)2

2m+
(2n+m)2

n− 2m+ · · ·

370. If the given series progresses by successive factors, such that

x =
1

A
− 1

AB
+

1

ABC
− 1

ABCD
+

1

ABCDE
− · · · ,
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then the following determinations will be put forth

α =
b

A
,

β =
bc

B − 1
,

γ =
Bcd

(B − 1)(C − 1)
,

δ =
Cde

(C − 1)(D − 1)
,

ε =
Def

(D − 1)(E − 1)

etc.

Accordingly, let us set the following

b = A from which α = 1 ,

c = B − 1 β = A ,

d = C − 1 γ = B ,

e = D − 1 δ = C

f = E − 1 ε = D

etc.

Then as a consequence we will have

x =
1

A+
A

B − 1 +
B

C − 1 +
C

D − 1 +
D

E − 1 + · · ·

Example I.

We previously defined e to be the number whose logarithm equals 1, and

found that

1

e
= 1− 1

1
+

1

1 · 2
− 1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
− · · ·

or alternatively

1− 1

e
=

1

1
− 1

1 · 2
+

1

1 · 2 · 3
− 1

1 · 2 · 3 · 4
+ · · ·
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This series will be converted into a continued fraction by setting

A = 1, B = 2, C = 3, D = 4, · · ·

and when this is done we will have

1− 1

e
=

1

1 +
1

1 +
2

2 +
3

3 +
4

4 +
5

5 + · · ·

from which, by eliminating the initial asymmetry, we will get

1

e− 1
=

1

1 +
2

2 +
3

3 +
4

4 +
4

4 +
5

5 + · · ·

Example II.

We previously found the cosine of any arc which equals its chosen radius

to be

1− 1

2
+

1

2 · 12
− 1

2 · 12 · 30
+

1

2 · 12 · 30 · 56
− · · ·

Accordingly, let us set

A = 1, B = 2, C = 12, D = 30, E = 56, · · ·

and also set x to the cosine of an arc which equals its radius. Then we will

have

x =
1

1 +
1

1 +
2

11 +
12

29 +
30

55 + · · ·

or alternatively
1

x
− 1 =

1

1 +
2

11 +
12

29 +
30

55 + · · ·
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371. If the series from above is joined with a geometric series, which is to
say

x = A−Bz + Cz2 −Dz3 + Ez4 − Fz5 + · · · ,
then we will have

α = Ab ,

β =
Bbcz

A−Bz
,

γ =
ACcdz

(A−Bz)(B − Cz)
,

δ =
BDdez

(B − Cz)(C −Dz)
,

ε =
CEefz

(C −Dz)(D − Ez)

etc.

Let us now set

b = 1 and so α = A ,

c = A−Bz β = Bz ,

d = B − Cz γ = ACz ,

e = C −Dz δ = BDz

etc.,

from which

x =
A

1 +
Bz

A−Bz +
ACz

B − Cz +
BDz

C −Dz + · · ·

372. In order to allow a more general result, let us set

x =
A

L
− By

Mz
+

Cy2

Nz2
− Dy3

Oz3
+

Ey4

Pz4
− · · · ,
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and then by comparing it to what has been established, we will have

α =
Ab

L
,

β =
BLbcy

AMz −BLy
,

γ =
ACM2cdyz

(AMz −BLy)(BNz − CMy)
,

δ =
BDN2deyz

(BNz − CMy)(COz −DNy)
,

etc.

The values of b, c, d, etc., are set as follows

b = L so α = A ,

c = AMz −BLy β = BLLy ,

d = BNz − CMy γ = ACM2yz ,

e = COz −DNy δ = BDN2yz ,

f = DPz − EOy ε = CDO2yz

etc.,

from which the given series will be expressed by the following continued

fraction

x =
A

L+
BLLy

AMz −BLy +
ACMMyz

BNz − CMy +
BDNNyz

COz −DNy + · · ·

373. Finally, let the given series be of the form

x =
A

L
− ABy

LMz
+

ABCy2

LMNz2
− ABCDy3

LMNOz3
+ · · · ,
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and the following values will be put forth

α =
Ab

L
,

β =
Bbcy

Mz −By
,

γ =
CMcdyz

(Mz −By)(Nz − Cy)
,

δ =
DNdeyz

(Nz − Cy)(Oz −Dy)
,

ε =
EOefyz

(Oz −Dy)(Pz − Ey)
,

etc.

So in order to find integer values let us set

b = Lz so α = Az ,

c = Mz −By β = BLyz ,

d = Nz − Cy γ = CMyz ,

e = Oz −Dy δ = DNyz ,

f = Pz − Ey ε = EOyz

etc.,

from which the value of the given series will be expressed as

x =
Az

Lz +
BLyz

Mz −By +
CMyz

Nz − Cy +
DNyz

Oz −Dy + · · ·

Or so that the law of progression may be made plain starting from the be-

ginning,

Az

x
−Ay = Lz −Ay +

BLyz

Mz −By +
CMyz

Nz − Cy +
DNyz

Oz −Dy + · · ·

374. In this way, innumerably many infinite continued fractions will be

able to be found, whose true values may be produced. For, as has been

treated above, an infinite series whose sum is known can be applied to this
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task. Each and every one of them will be able to be transformed into a

continued fraction whose value is, moreover, equal to the sum of that series.

The examples which have just been related suffice to show this usage. It

is still to be desired to discover a method whose benefit would be, when

given an arbitrary continued fraction, its value could immediately be found.

Although a continued fraction can be transformed into an infinite series whose

sum may be investigated by known methods, nevertheless, for the most part

such series which arise are so intricate that their sums, though they may be

simple enough, are scarcely able to be found.

375. So that it may be more clearly discerned that there are continued

fractions of this kind, whose values may easily be determined by other means,

yet nothing much may be gathered from the infinite series they are converted

into, let us consider this continued fraction

x =
1

2 +
1

2 +
1

2 +
1

2 + · · ·

whose denominators are all equal to each other. If we form fractions in the

manner shown above

0 2 2 2 2 2 2

1

0
,

0

1
,

1

2
,

2

5
,

5

12
,

12

29
,

29

70
, etc.,

then this series will arise

x = 0 +
1

2
− 1

2 · 5
+

1

5 · 12
− 1

12 · 29
+

1

29 · 70
− · · · ,

or, if the terms are joined pairwise, we will have

x =
2

1 · 5
+

2

5 · 29
+

2

29 · 169
+ · · ·

or

x =
1

2
− 2

2 · 12
− 2

12 · 70
− . . .

Moreover, since

x =
1

4
− 1

2 · 2 · 5
+

1

2 · 5 · 12
− 1

2 · 12 · 29
+ . . .

+
1

4
− 1

2 · 2 · 5
+

1

2 · 5 · 12
− 1

2 · 12 · 29
+ . . . ,
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we will have

x =
1

4
+

1

1 · 5
− 1

2 · 12
+

1

5 · 29
− 1

12 · 70
+ . . .

which series, though strongly convergent, its true sum nevertheless cannot

be gathered from its form.

376. For these kinds of continued fractions, in which the denominators are

either all equal, or else they repeat, such that if several terms are truncated

from the beginning, what remains is equal to the fraction itself, there is an

easy way to investigate these sums. In the previous example, since

x =
1

2 +
1

2 +
1

2 +
1

2 + · · ·

we will have

x =
1

2 + x
,

and so
xx+ 2x = 1 ,

and

x+ 1 =
√
2 ,

so that the value of this continued fraction is
√
2− 1 .

But the fractions which come from a continued fraction before having fully

extracted the root approach this value ever more closely, and so quickly that

it is only with difficulty that a quicker way may be found to approximately

express this irrational value by rational numbers. Indeed,
√
2− 1 is so close

to 29/70 that the error is negligible: by extracting the root we will get
√
2− 1 = 0.41421356236 ,

and
29

70
= 0.41428571428 ,

so the error consists only in the 100 000th place.
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377. Just as continued fractions provide a convenient method to approx-

imate the value of
√
2, they will similarly provide the easiest way to ap-

proximate roots of other numbers under investigation. To this end, let us
set

x =
1

a+
1

a+
1

a+
1

a+
1

a+ · · ·

and we will have

x =
1

a+ x

and
xx+ ax = 1 ,

from which

x = −1

2
a+

√
1 +

1

4
aa =

√
aa+ 4− a

2
.

So this continued fraction will serve to approximate the value of the square

root of the number aa+4. Moreover, by successively substituting in place of

a the numbers 1, 2, 3, 4, etc., we will obtain the numbers
√
5,

√
2,

√
13,

√
5,√

29,
√
10,

√
53, etc., these roots conveyed in the simplest form, as follows

1 1 1 1 1 1
0

1
,

1

1
,

1

2
,

2

3
,

3

5
,

5

8
, etc. =

√
5− 1

2
,

2 2 2 2 2 2
0

1
,

1

2
,

2

5
,

5

12
,

12

29
,

29

70
, etc. =

√
2− 1 ,

3 3 3 3 3 3
0

1
,

1

3
,

3

10
,

10

33
,

33

109
,

109

360
, etc. =

√
13− 3

2
,

4 4 4 4 4 4
0

1
,

1

4
,

4

17
,

17

72
,

72

305
,

305

1292
, etc. =

√
5− 2 ,

etc.
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It is also to be noted that the approximation goes faster as the number a

gets larger. In the last example, we have
√
5 = 2 305

1292 ,

where the error is less than 1/(1292 · 5473), and 5473 is the denominator of

the next fraction 1292/5473.

378. But by this method, the roots of other numbers will not be able to

be extracted, unless they are the sum of two squares. So in order to extend

this approximation to all numbers, let us set

x =
1

a+
1

b+
1

a+
1

b+
1

a+
1

b+ · · ·

We will have

x =
1

a+
1

b+ x

=
b+ x

ab+ 1 + ax
,

and so
axx+ abx = b

and

x = −1

2
b±

√
1

4
bb+

b

a
=

−ab+
√
aabb+ 4ab

2a
.

We will now be able to find the roots of all numbers. For example, by setting

a = 2 and b = 7 we will get

x =
−14 +

√
14 · 18

4
=

−7 + 3
√
7

2
,

but the approximate value of x itself will be shown by the following fractions

2 7 2 7 2 7

0

1
,

1

2
,

7

15
,

15

32
,

112

239
,

239

510
, etc.

We will therefore have the approximation

−7 + 3
√
7

2
=

239

510
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and
√
7 =

2024

765
= 2.645 751 6 .

But it actually is √
7 = 2.645 751 31 ,

so that the error is less than 3/10 000 000.

379. Let us go one more step, and set

x =
1

a+
1

b+
1

c+
1

a+
1

b+
1

c+
1

a+ · · ·

We will have

x =
1

a+
1

b+
1

c+ x

=
1

a+
c+ x

bx+ bc+ 1

=
bx+ bc+ 1

(ab+ 1)x+ abc+ a+ c
,

from which
(ab+ 1)xx+ (abc+ a− b+ c)x = bc+ 1 ,

and so

x =
−abc− a+ b− c+

√
(abc+ a+ b+ c)2 + 4

2(ab+ 1)
,

where the quantity under the radical sign is again the sum of two squares.

Therefore, this form will not serve to extract the roots of other numbers,

unless the first form already sufficed. In a similar way, if the the denomi-

nators of the continued fraction consisted of the four letters a, b, c, d being

continuously repeated, then it would not serve any better than the second

form, which contained only two letters, and so on.

380. Just as continued fractions can be so usefully employed to extract

square roots, they will likewise serve to solve quadratic equations. This is

clear from the above calculation, at least when x is determined from the par-

ticular quadratic equation. But moreover, a root of any quadratic equation

can be expressed this way, by a continued fraction. Given the equation

xx = ax+ b ,
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since

x = a+
b

x
,

by substituting into the last term the value of x already found, we will get

x = a+
b

a+
b

x

and proceeding in the same way, we will find an infinite continued fraction

x = a+
b

a+
b

a+
b

a+ . . .

which, however, because the numerators b are not equal to unity, is not so

convenient to use.

381. In order to show their use in arithmetic, the first thing to note is

that any ordinary fraction can be converted into a continued fraction. Let x

be a fraction

x =
A

B
,

in which A > B. Let A be divided by B, the quotient be a and the remainder

C. Then this remainder C divides the previous divisor B, producing quotient

b and leaving remainder D. This then divides the previous divisor C, and this

operation, which is widely used to compute the greatest common divisor of

two numbers A and B being investigated, continues to completion, as follows

B ) A

C ) B

D ) C

E ) D

F ) etc.

( d

( c

( b

( a
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And then we will have, by the nature of division

A = αB + C , and so
A

B
= a+

C

B
,

B = bC +D ,
B

C
= b+

D

C
,

C

B
=

1

b+ D
C

,

C = cD + E ,
C

D
= c+

E

D
,

D

C
=

1

c+ E
D

,

D = dE + F ,
D

E
= d+

F

E
,

E

D
=

1

d+ F
E

,

etc.

From here, by substituting the latter values into the previous ones, we will
get

x =
A

B
= a+

C

B
= a+

1

b+ D
C

= a+
1

b+
1

c+ E
D

and in the end x will be expressed as a quotient purely in terms of the a, b,

c, d, etc., we found above, in the following way

x = a+
1

b+
1

c+
1

d+
1

e+
1

f + · · ·

Example I.

Given the fraction 1461/59, it will be converted into a continued fraction,

all of whose numerators are unity, as follows. Let us set up the very same

calculation which is normally used to find the greatest common divisor of the

numbers 59 and 1461.
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59 ) 1461
118

281
236

45 ) 59
45

14 ) 45
42

3 ) 14
12

2 ) 3
2

1 ) 2
2

0

( 2

( 1

( 4

( 3

( 1

( 24

From these quotients we will get

1461

59
= 24 +

1

1 +
1

3 +
1

4 +
1

1 +
1

2

Example II.

Even decimal fractions can be converted in the very same way. Let us

consider
√
2 = 1.41421356 =

141 421 356

100 000 000
,

from which we set up this calculation

100 000 000 141 421 356 1
82 842 712 100 000 000 2
17 157 288 41 421 356 2
14 213 560 34 314 576 2
2 943 728 7 106 780 2
2 438 648 5 887 456 2
505 080 1 219 324 2
418 728 1 010 160 2

etc. 209 364
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From this calculation, all the denominators are now seen to be 2, and more-
over

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + · · ·

the reason for which has already been explained above.

Example III.

But the number e, whose logarithm equals 1, is at this point worth par-

ticular attention. We have

e = 2.718281828459 ,

and so
e− 1

2
= 0.8591409142295 ,

whose decimal fraction, if handled in the above manner, will yield the fol-

lowing quotients

8 591 409 142 295 10 000 000 000 000 1
8 451 545 146 224 8 591 409 142 295 6
139 863 996 071 1 408 590 857 704 10
139 312 557 916 1 398 639 960 710 14

551 438 155 9 950 896 994 18
550 224 488 9 925 886 790 22

1 213 667 25 010 204 etc.

If that calculation were painstakingly continued further toward the value of

e itself, then these quotients would be obtained

1, 6, 10, 14, 18, 22, 26, 30, 34, · · ·

which, except for the first, sets out an arithmetic progression, from which it

is clear that
e− 1

2
=

1

1 +
1

6 +
1

10 +
1

14 +
1

18 +
1

22 + · · ·

and the rationale of the fraction can be obtained from infinitesimal calculus.

382. Just as, from these kinds of expressions, fractions may be determined

which readily lead to the true value of the expression, so too this method
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may be applied to a decimal fraction, expressing it with ordinary fractions,

to be determined, which approximate it closely. Moreover, if a fraction is

given whose numerator and denominator are extremely large, fractions of

smaller fixed numbers can be found which, although not exactly equal to the

given fraction, nevertheless differ from it minimally. From here, the problem

formerly treated by Wallis can easily be solved, where it is to find fractions

expressed using smaller numbers, which exhaust as much as possible the

value of a given fraction expressed with larger numbers, without increasing

the numbers. Fractions arising from our method so closely approach the value

of the continued fraction they were derived from, that no fixed numbers can

be given which approach it better, unless those numbers are larger.

Example I.

Let us express the ratio of the diameter to the circumference using num-

bers which are as economical as possible, such that the accuracy cannot be

increased unless larger numbers are introduced. If the known decimal fraction

3.1415926535 · · ·
is evolved by continued division in the manner set out previously, we will

obtain the following quotients

3, 7, 15, 1, 292, 1, 1, · · · ,

from which the following fractions will be formed

1

0
,

3

1
,

22

7
,

333

106
,

355

113
,

103993

33102
, · · · .

The second fraction now shows that the diameter being to the circumference

as 1 : 3 can certainly not be given more accurately without larger numbers.

The third fraction gives the Archimedean ratio 7 : 22, and the fifth that of

Metius, which comes so close to the true value that the error is less than

1/(113 · 33102). The rest of these fractions alternate between being larger

and smaller than the true value.

Example II.

Let us express, using smallest numbers, the approximate ratio of the day

to the average solar year. Since such a year is 365d 5h 48′ 55′′, the year will

contain, as an ordinary fraction

365
20935

86400
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days. So the only thing needed is to evolve this fraction, which will give the

following quotients

4, 7, 1, 6, 1, 2, 2, 4

yielding the fractions

0

1
,

1

4
,

7

29
,

8

33
,

55

227
,

63

260
,

181

747
, · · ·

Therefore the hours, along with the minutes and seconds which surpass 365

days make about one day in four years, which is the origin of the Julian cal-

endar. But more precisely, 33 years fill up 8 days, or 747 years 181 days, from

which it follows that in 400 years there are 97 extra days. Hence, whereas the

Julian calendar inserts 100 days during this interval, the Gregorian calendar

converts three of the leap years into regular years.


